Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness.
نویسندگان
چکیده
Tactile pattern recognition depends on form and texture perception. A principal dimension of texture perception is roughness, the neural coding of which was the focus of this study. Previous studies have shown that perceived roughness is not based on neural activity in the Pacinian or cutaneous slowly adapting type II (SAII) neural responses or on mean impulse rate or temporal patterning in the cutaneous slowly adapting type I (SAI) or rapidly adapting (RA) discharge evoked by a textured surface. However, those studies found very high correlations between roughness scaling by humans and measures of spatial variation in SAI and RA firing rates. The present study used textured surfaces composed of dots of varying height (280-620 micron) and diameter (0.25-2.5 mm) in psychophysical and neurophysiological experiments. RA responses were affected least by the range of dot diameters and heights that produced the widest variation in perceived roughness, and these responses could not account for the psychophysical data. In contrast, spatial variation in SAI impulse rate was correlated closely with perceived roughness over the whole stimulus range, and a single measure of SAI spatial variation accounts for the psychophysical data in this (0.974 correlation) and two previous studies. Analyses based on the possibility that perceived roughness depends on both afferent types suggest that if the RA response plays a role in roughness perception, it is one of mild inhibition. These data reinforce the hypothesis that SAI afferents are mainly responsible for information about form and texture whereas RA afferents are mainly responsible for information about flutter, slip, and motion across the skin surface.
منابع مشابه
Neural coding mechanisms underlying perceived roughness of finely textured surfaces.
Combined psychophysical and neurophysiological studies have shown that the perceived roughness of surfaces with element spacings of >1 mm is based on spatial variation in the firing rates of slowly adapting type 1 (SA1) afferents (mean absolute difference in firing rates between SA1 afferents with receptive fields separated by approximately 2 mm). The question addressed here is whether this mec...
متن کاملA Variation Code Accounts for the Perceived Roughness of Coarsely Textured Surfaces
For decades, the dominant theory of roughness coding in the somatosensory nerves posited that perceived roughness was determined by the spatial pattern of activation in one population of tactile nerve fibers, namely slowly adapting type 1 (SA1) afferents. Indeed, the perceived roughness of coarsely textured surfaces tracks the spatial variation in SA1 responses - the degree to which response st...
متن کاملParallel coding schemes of whisker velocity in the rat's somatosensory system.
The function of rodents' whisker somatosensory system is to transform tactile cues, in the form of vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through whisker movements to neuronal responses is not well-understood. Here we examine the role of whi...
متن کاملEvidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles.
It has been known for some time that populations of cutaneous and muscle afferents can provide short-latency facilitation of motoneuron pools. Recently, it has been shown that the input from individual low-threshold mechanoreceptors in the glabrous skin of the hand can modulate ongoing activity in muscles acting on the fingers via spinally mediated pathways. We have extended this work to examin...
متن کاملParallel Coding Schemes of Whisker Velocity in the Rat ’ s Somatosensory System 3 4 5
28 29 The function of rodents’ whisker somatosensory system is to transform tactile cues, in the form of 30 vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous 31 tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through 32 whisker movements to neuronal responses is not well-understood. Here we examine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 19 شماره
صفحات -
تاریخ انتشار 1997